摘要
为预防在禁烟场所因吸烟引发的火灾事故,提出了一种基于YOLOv5s的改进算法,利用改进算法对摄像头获取的图像进行逐帧检测,实现吸烟行为的实时检测。首先,将转换器(Transformer)引入网络颈部中,增强网络对多尺度目标的检测能力;其次,加入坐标注意力(Coordinate Attention, CA)模块,丰富网络提取的特征图信息,增强特征图信息表达能力;最后,增加一个小目标检测层,提高网络对香烟小目标的检测能力,降低网络对小目标的漏检率。此外,构建了一个多场景下的吸烟行为数据集,并对马赛克(Mosaic)数据增强策略进行改进,改善原有数据增强方式丢失目标的问题。试验结果表明,改进后的算法在精确率、召回率和平均精确率上相比原模型均有所提升,在多目标和小目标场景下的实际检测效果对比原模型有明显改善,同时检测速度满足实时性要求,改进后的模型能够更好地应用于吸烟行为实时检测任务。
-
单位江西理工大学; 自动化学院