摘要
激光雷达作为SLAM传感器之一,因精度高、性能稳定等特点而被广泛研究使用.但其获得的点云数据较稀疏,包含特征信息少,会导致误匹配、位姿估计误差大等问题,影响SLAM的定位和建图精度.针对上述问题,本文提出一种将视觉语义信息与激光点云数据融合的SLAM算法(VSIL-SLAM).首先,基于投影思想将聚类后点云映射到语义检测框内,生成语义物体,解决原始激光点云特征稀缺问题;然后,在形状特征的基础上引入拓扑特征对语义物体进行表述,提出基于匹配的拓扑相似性度量方法,解决单一特征造成的误匹配问题,提高匹配准确度;最后,加入语义物体点到点的几何约束,基于几何特征和语义物体构建前端里程计,并完成后端回环检测和位姿图优化设计.实验结果表明,所提出算法在定位和建图效果上都有显著提高,改善了激光SLAM算法的性能.
- 单位