摘要
In this paper, a pairwise-based meta learning(PML) method is proposed for few-shot image classification. Transitive transfer learning is used to fine tune the pre-trained Resnet50 model to get a feature encoder that is more suitable for few shot task. The feature encoder is used as the initial feature encoder of the meta-learning model to train the model, which further enhances the generalization ability of the meta-learning model. Based on the similarity between the support set and the query set samples, a meta loss(ML) function is proposed, which considers the relationship between all the samples of the query set in the feature space, so as to reduce the within-class distance of positive samples and increase the between-class distance of positive and negative samples, thus improving the classification accuracy.The experimental results show that the classification accuracy of the methods in this paper is 77.65% and 89.65% on 1-shot and 5-shot tasks, respectively, and it is 7.38% and 5.65% higher than the latest meta-learning method, Meta-baseline. ? 2022, Chinese Institute of Electronics. All right reserved.
- 单位