摘要

提出一种车辆雾计算网络中视频直播业务的资源分配方法,通过联合优化比特率选择、用户调度和频谱资源分配,以实现在最大化视频质量的同时降低时延和视频抖动.为了降低时延和视频抖动,在效用函数的设计中将时延和比特率切换作为惩罚因子.由于网络的动态变化特性和可用的频谱资源,将上述优化问题建模为马尔可夫决策过程,采用Soft Actor-Critic深度强化学习算法获得最优资源分配策略.仿真结果证明,所提方法比现有强化学习算法具有更好的探索能力和收敛性能.