摘要

冠心病是一种最为常见的心血管疾病,近年来在中国的发病率与死亡率逐年升高,准确诊断和及时治疗是有效降低冠心病死亡率的主要措施。通过引入模糊系统的理论,在传统BP神经网络结构中加入了模糊层与模糊规则计算层,建立了T-S模糊神经网络模型。使用该模型对采集于克利夫兰诊所的297组数据进行分析预测,与传统BP神经网络预测结果对比显示,T-S模糊神经网络模型的平均准确率为82.93%,而传统BP神经网络的平均准确率为75.56%,表明T-S模糊神经网络模型在冠心病的智能诊断中具有较高的预测准确率。