摘要

基于健康监测时间序列数据,提出了桥梁动态可靠度指标的改进粒子滤波预测方法.首先,利用监测极值数据建立动态模型,将其作为粒子滤波算法的状态方程和监测方程;然后,采用贝叶斯动态线性模型(BDLM)为粒子滤波器提供随时间更新的动态建议分布,以解决传统粒子滤波算法的样本退化问题,同时增加了粒子滤波算法的鲁棒性及自适应性;进而利用改进的粒子滤波算法(IPF),结合极值监测数据实现结构极值的动态预测,并结合一次二阶矩(FOSM)可靠性方法,实现桥梁结构可靠度指标的动态预测;最后通过在役桥梁工程实例与设计试验对所提模型和方法的合理性与有效性进行验证.

  • 单位
    西部灾害与环境力学教育部重点实验室; 兰州大学