摘要
针对现代工业制造背景下的个性化机械零件,通常具有不规则和一定自相似性的分形特性,提出一种基于改进多重分形去趋势波动分析(MF-DFA)法的零件特征提取与缺陷识别方法。首先,选用三角形覆盖模块替代传统MF-DFA法中的正方形覆盖模块,解决传统MF-DFA法存在过度覆盖的问题,为零件图像缺陷识别提供更精准的数据;其次,利用改进MF-DFA法计算零件图像的多重分形谱;再利用核主成分分析(KPCA)方法提取零件图像的缺陷特征值;最后通过支持向量机(SVM)对零件缺陷进行识别。实验结果表明,三角覆盖二维MF-DFA算法能够准确提取零件特征,提高零件缺陷识别的准确率。
- 单位