摘要

高光谱遥感图像具有丰富的光谱信息,数据量大。为了能够有效地利用高光谱图像数据,促进高光谱遥感技术的发展,该文提出一种基于自适应波段聚类主成分分析(PCA)与反向传播(BP)神经网络相结合的高光谱图像压缩算法。算法利用近邻传播(AP)聚类算法对波段进行自适应聚类,对聚类后的各个分组分别进行PCA运算,最后利用BP神经网络对所有主成分进行编码压缩。该文的创新点在于BP神经网络压缩图像时,在训练步骤过程中,误差反向传播是用原图与输出作差值,再反向调整各层的权值、阈值。对高光谱图像进行波段聚类,不仅能够有效地利用谱间相关性,提高压缩性能,还可以降低PCA的运算量。实验结果表明,该文算法与其它现有算法比较,在相同压缩比下,其光谱角更小,信噪比更高。