摘要
为提高过热度识别的准确性和降低成本,提出了一种融合火眼图像深层特征和浅层特征的过热度识别方法。首先,提出CNN-CGWO-ILSTSVM的过热度识别模型,利用卷积神经网络(CNN)对火眼图像进行深层特征提取,利用改进的最小二乘孪生支持向量机(ILSTSVM)作为分类器提高算法的泛化能力和运算效率。然后,针对ILSTSVM参数选择困难,采用混沌灰狼优化算法(CGWO)对ILSTSVM进行参数寻优,从而提高分类器的精度和泛化能力。最后,采用实际生产数据对方法进行验证。实验结果表明,提出的CNN-CGWO-ILSTSVM模型提高了火眼图像识别的泛化能力和鲁棒性,该方法识别的准确率为93.74%,对比目前的过热度识别方法,显示出更好的优越性。
- 单位