摘要
氨煤混燃可有效降低火力发电中CO2排放,但氨作为N源与煤混烧时会增加NOx排放,探究氨煤混燃过程中NO还原机理对实现氨煤混燃低氮排放非常必要。采用密度泛函理论探究氨煤混燃高温贫氧区内NO还原机理,进一步分析煤中重要矿物质钙对NH3协同煤焦还原NO的影响。理论计算结果表明,高温贫氧区内氨基/煤焦可将NO通过形成NNH、N2O等重要过渡中间产物进而还原成N2,NH协同煤焦还原NO中NNH的形成需克服438.49 kJ/mol能垒,成为体系反应决速步。矿物质钙不利于NH和NO在煤焦表面吸附,降低二者在煤焦表面的吸附能约187.09 kJ/mol。煤焦表面顶部Ca存在下NH还原NO可通过生成中间产物NNH(路径1)和N2O(路径2)2种路径实现,路径1决速步能垒为636.41 kJ/mol,较NH/煤焦/NO体系的决速步能垒高出197.92 kJ/mol;Ca参与下路径2中决速步N2O自由基的形成需455.74 kJ/mol,较NH/煤焦/NO体系的决速步能垒高出17.25 kJ/mol,2条路径均表明金属矿物质钙抑制了NH/煤焦对NO的还原。Ca的存在增强了NNH基团与煤焦表面结合能,使得顶部钙催化作用下路径1较路径2抑制作用更强。采用过渡态理论计算了Ca参与前后NH/煤焦/NO体系决速步动力学参数,结果表明,顶部钙参与下NH协同煤焦还原NO的速率低于无钙参与体系NO的还原速率,且路径1中NH协同煤焦还原NO速率比路径2更低,确定了顶部钙催化作用下路径1较路径2抑制作用更强,动力学结果与热力学结果一致。
- 单位