摘要

为了考虑等时曲线的求解问题,建立质点沿光滑曲线从一定高度下滑所需时间的公式,将该问题转化为一个积分方程的求解问题。对无限区间上的积分方程,利用拉普拉斯变换方法给出了求解方法,得到了积分方程解的解析表达式,然后将其变化为一个常微分方程的求解问题。对有限区间上的积分方程,利用含参变量积分的求导和积分交换次序方法,得到积分方程解的解析表达式。然后将等时曲线问题,转化为一个常微分方程的求解问题,通过求解得到等时曲线解的解析表达式,即摆线的方程形式,从而给出了具有等时性的曲线一定是摆线的证明过程,对等时曲线的问题给予了完整的解决。