摘要

永磁同步电机(PMSM)实际运行过程中由于外界环境温度磁场变化以及自身磁路饱和,会引起电机参数变化,导致电机控制性能下降。提出了一种变步长的自适应线性(adaline)神经网络对电机进行多参数在线辨识,在学习过程中使用自适应于误差的步长因子,并在权值更新公式中增加了动量项,从而加快了PMSM多参数在线辨识的收敛速度,提高了辨识精度,进而提高永磁同步电机的控制性能。通过建立数学模型,用计算机对辨识方法进行了仿真研究。仿真结果表明,对比传统的Adaline神经网络,该算法收敛速度更快,并且具有稳态误差小,鲁棒性好的特点。