摘要
针对机械加工件表面缺陷检测问题,对工件表面缺陷种类、缺陷位置进行了研究,对深度学习中的目标检测算法进行了归纳分析,提出了一种基于DSSD模型的机械加工件表面缺陷检测方法。该方法首先利用扫描电子显微镜获取了不同工件、不同位置的表面缺陷图像,建立了工件表面缺陷数据集,并对数据集进行了扩充;然后将DSSD网络模型反卷积模块的网络层数进行了简化,从而降低了计算复杂度;最后利用简化后的DSSD模型完成了对数据集的训练和测试。研究结果表明:DSSD模型的检测效率高于YOLO、Faster R-CNN和SSD这3种模型,能够更准确、快速地检测工件表面缺陷,为实际工业场景下的缺陷检测提供了新的思路。
- 单位