传统的DGA攻击检测方法已经无法满足对不断变种的DGA域名的识别,检出准确率较低.因此主要研究一种基于MLP深度学习算法的DGA准确识别技术,通过已有的DGA样本数据集,提取多维度的特征向量信息,通过归一化、降维处理后,将特征向量输入MLP多层感知器进行训练,MLP多层感知器主要由输入层、隐藏层和输出层组成,训练后生成模型文件即可载入用于判断待检测的域名是否为DGA域名,可以有效提升DGA检测识别的准确度.