摘要
利用可见/近红外高光谱成像技术实现荷斯坦奶牛、秦川牛、西门塔尔牛三个品种牛肉的快速无损鉴别。首先,对原始光谱进行预处理并对样本集进行划分;应用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)和无信息变量消除算法(UVE)对预处理后的光谱数据提取特征波长;结合偏最小二乘判别模型(PLS-DA)、K最近邻(KNN)模型及支持向量机(SVM)模型进行全波段及特征波段鉴别分析。结果表明,一阶导数(FD)法为最优预处理方法,利用光谱-理化值共生距离法(SPXY)法划分后的样本模型预测性能最好;利用CARS、SPA和UVE分别选出24、17和19个特征波长;基于CARS法提取的特征波长所建的RBF-SVM模型的校正集与预测集正确率分别为100%、98.82%。由此可见,基于高光谱成像技术能够获得较好的牛肉品种鉴别效果。该研究可为牛肉品种的快速无损鉴别提供参考。
- 单位