摘要
短临降水预报是一项重要且具有挑战性的世界性难题.研究人员曾尝试使用各种技术预报降水,但是由于降水本身具有高度非线性、随机性和复杂性的特性,使得降水预测精确度并不高.近年来,随着人工智能技术的迅猛发展,其日渐渗透到人们生活的方方面面,气象领域也因此得益.人工神经网络能够对非线性系统进行建模,因此相比于传统方法,如数值天气预报法和光流法等,人工智能方法使得降水预报的准确率大大提高.本文介绍了传统降水预报的方法,着重总结概括了用于短临降水预报的各种最新人工智能方法,并对各研究方向进行归纳分析,为各类研究人员研究提供有益参考和借鉴.
- 单位