摘要

目前,基于图神经网络的社交推荐方法主要对社交信息和交互信息的显式关系和隐式关系进行联合建模,以缓解冷启动问题。尽管这些方法较好地聚合了社交关系和交互关系,却忽略了高阶隐式关系并非对每个用户都有相同的影响,并且监督学习的方法容易受到流行度偏差的影响。此外,这些方法主要聚焦用户和项目之间的协作关系,没有充分利用项目之间的相似关系。因此,本文提出一种融入多影响力与偏好的图对比学习社交推荐算法(SocGCL)。一方面,引入节点间(用户和项目)融合机制和图间融合机制,并考虑了项目之间的相似关系。节点间融合机制区分图内不同节点对目标节点的不同影响;图间融合机制聚合多种图的节点嵌入表示。另一方面,通过添加随机噪声进行跨层图对比学习,有效缓解社交推荐的冷启动问题和流行度偏差。在两个真实数据集上的实验结果表明,SocGCL优于其他基线方法,有效提高社交推荐的性能。