Android恶意APP多视角家族分类方法

作者:郝靖伟; 罗森林; 张寒青; 杨鹏*; 潘丽敏
来源:北京航空航天大学学报, 2022, 48(05): 795-804.
DOI:10.13700/j.bh.1001-5965.2020.0658

摘要

针对现有Android恶意软件家族分类方法特征构建完备性不足、构建视角单质化等问题,提出了一种多视角特征规整的卷积神经网络(CNN)恶意APP家族分类方法。该方法结合MinHash算法。将软件中Android框架系统API、操作码序列、AndroidManifest.xml文件中的权限和Intent组合3个视角的原始特征在保留APP间相似度情况下进行规整,并利用多路卷积神经网络完成对各视图的特征提取和信息融合,构建一套恶意APP家族分类模型。基于公开数据集Drebin、Genome、AMD的实验结果表明:恶意APP家族分类准确率超过0.96,证明了所提方法能够充分挖掘各视角的行为特征信息,能有效利用多视角特征间的异构特性,具有较强的实用价值。

全文