摘要

针对水电机组早期故障信号信噪比低的问题,本文将奇异值分解(SVD)和深度置信网络(DBN)相结合进行故障诊断。首先,利用包含噪声的振动信号构造Hankel矩阵,对其进行奇异值分解,采用奇异值差分谱法选取有效奇异值进行相空间重构,实现降噪的目的;然后,对降噪后的振动信号进奇异值分解,用所得的整个奇异值序列构造特征向量;最后,建立深度置信网络分类器模型,实现水电机组的故障诊断。同时,将所提方法与BP神经网络,多分类支持向量机进行对比。结果表明,本文所提方法能够更加可靠高效地识别故障类型,具有一定的应用价值。