摘要
为分析影响道路交通事故严重程度的因素,量化事故影响因素,根据支持向量机递归特征消除法(SVM-RFE)选择合适的特征,并量化特征的重要度,再以选择之后的特征作为输入,结合随机森林模型进行预测。最后应用于具体交通事故数据,将筛选之后的影响因素作为输入,分别使用KNN(K最近邻)、随机森林、支持向量机模型进行预测分析,相比较于全部特征值,预测精度分别提高了2.64%、2.72%、1.45%,对比结果表明模型提高了预测的识别精度与算法效率。
-
单位重庆交通大学; 交通运输学院