摘要
旋转机械因其特殊的功能要求,通常工作在恶劣的环境中,振动信号易受外界干扰。基于传统信号处理方法的故障诊断技术越来越不能满足故障诊断精度的需要,因此,利用大数据和人工智能技术进行旋转机械故障诊断成为目前的主要研究方向之一。针对以上问题,提出一种基于双向长短时记忆网络(Bi-LSTM)和自注意力机制的旋转机械故障诊断方法。首先,利用转子实验台模拟旋转机械的各种运行状态,采集旋转机械在各种运行状态下的振动信号;然后,将振动信号输入Bi-LSTM网络,自注意力机制将Bi-LSTM各时间步的输出进行加权求和,获得振动信号的深层特征表示;最后,通过全连接层和Softmax层输出旋转机械各种运行状态的预测概率。实验结果表明:本文提出的方法能够有效地实现旋转机械的故障诊断,与其他方法相比,模型的训练稳定性、收敛速度和故障识别准确率均得到提高。
- 单位