摘要

针对海上平台电气设备温度监控的现实需求,以无线红外温度传感器及数据采集终端为基础,构建了海上平台电气设备温度分布式监控系统,配套开发了系统应用软件,实现了平台电气设备温度的持续监控。针对传统温度预测难以应对大量波动性数据且对时间序列处理能力有限的问题,提出贝叶斯优化与长短时记忆网络(LSTM)组合预测方法。以所监测的海上平台变压器为研究对象,分析变压器运行过程中的温度特征,采用时序性较强的LSTM网络预测模型,引入贝叶斯优化算法,用于训练和更新LSTM参数。实践表明,基于贝叶斯优化的LSTM模型对海上平台变压器温度具有良好的预测效果,其均方根误差为0.139、预测准确率为98.56%。通过对支持向量机、BP神经网络、LSTM、Bayesian-LSTM四种预测模型的比较分析,证实了贝叶斯优化的LSTM模型对海上平台变压器温度预测的优势。

全文