摘要

针对传统LIC(Local Intensity Clustering)模型在分割灰度不均匀图像时速度慢、精度不高且对初始轮廓位置敏感的缺点,提出了改进的LIC模型并将其用于甲状腺结节超声图像的分割。结合高斯概率分布引入局部方差变量构建新的局部灰度描述形式,将水平集演化设置在窄带范围内,以提高分割精度和速度;将标记分水岭算法获得的分割结果作为改进模型的初始轮廓,克服传统模型对初始轮廓敏感的缺点。对比实验结果表明,该改进模型能实现对甲状腺结节超声图像的快速自适应分割,并且在精度与分割速度上都较传统LIC模型有很大提高。

全文