摘要

在低纹理场景中,基于点特征的同时定位与地图构建(Simultaneous Localization and Mapping, SLAM)算法很难追踪足够多的有效特征点,系统甚至无法正常工作.众所周知,丰富的线段特征存在在人造结构化环境中的地面与墙面交界处.因此,提出一种点线特征融合的双目视觉SLAM算法.在特征提取前,引入梯度密度滤波器加速线特征提取和提高线匹配的准确度,在特征点匹配阶段,采用渐进采样一致性(Progressive Sampling Consensus, PROSAC)算法剔除误匹配点,从而提高定位精度.此外,在特征的融合过程中引入加权思想.在构造误差函数时对点线特征权重进行合理分配.最后,通过在公开的数据集上得到的仿真并与一些优秀的算法进行对比,该算法性能优于PL-SLAM和LSD-SLAM算法,证明了算法的有效性和准确性.