摘要
准确可靠的水库中长期预报结果对于指导受水区水资源优化配置等具有重要意义。本文首先选取SARIMA模型、SVM模型、XGBoost模型与RF模型分别构建公平水库月入库径流预报方案,以气象因子的物理机制为基础,在成因分析与随机森林重要性排序的基础上筛选关键预报因子并输入至4个单一模型中。然后在对比分析各模型优劣的基础上,以线性与非线性组合2种方式构建组合预报方案。结果表明:RF模型在4个单一模型中的模拟结果表现最优,SARIMA模型的模拟精度随着入库径流量的增加而增加;组合预报模型较任一单一模型的模拟结果均更好,基于神经网络的非线性组合方式能够有效提高验证期的模拟精度,增加模型的泛化能力。