摘要
从分析基于支持向量机和相关向量机的高光谱影像分类方法的优势和不足出发,将基于概率分类向量机的方法用于高光谱影像分类试验。在贝叶斯理论框架下,概率分类向量机为基函数权值引入截断Gauss先验概率分布,使得不同类别的基函数权值具有不同符号的先验分布,并利用EM算法进行参数推断,得到足够稀疏的概率模型,弥补了相关向量机选取错误类别的样本作为相关向量的不足,从而有效地提高了模型的分类精度和稳定性。OMIS和PHI影像分类试验表明,概率分类向量机能够很好地应用在高光谱影像分类。
-
单位地理信息工程国家重点实验室; 信息工程大学