摘要
带概念漂移的半监督数据流分类任务中,仅有少部分的数据被标记,这给分类器的训练、概念漂移的检测以及分类器对新概念的适应带来了巨大的挑战。现有的半监督聚簇分类算法中,仅对分类器池中的聚簇模型进行简单的增量更新,未能有效重用历史聚簇模型。因此,本文提出一种新的聚簇模型重用的半监督分类算法,称为CDCMR。首先,数据流以数据块的形式到来,对数据块分完类后,训练一个簇数自适应确定的聚簇模型。其次,通过计算分类器池中的各组件分类器与聚簇模型之间的相似度,挑选多个组件分类器。再次,用当前数据块对挑选出来的组件分类器进行模型重用后,与聚簇模型集成。然后,将分类器池划分为新旧更替和多样性最大化分类器池进行更新。最后,对下一个数据块的样本进行集成分类。在多个人工和真实数据集上的实验结果表明,算法能有效适应概念漂移,与现有方法相比有显著性提升。算法代码可在网站https://gitee.com/ymw12345/CDCMR上获取。
- 单位