摘要

霉变是导致粮食储藏过程中数量减少、质量降低的重要因素,若能早期预测粮食是否会发生霉变,提前采取处置措施,对保障粮食储藏安全,降低粮食损失具有重要的意义。本研究采用支持向量机算法,并通过网格搜索优化参数,分别建立了稻谷和小麦霉变的预测分类模型,以判定在给定水分、温度和储藏时间的条件下是否会发生霉变。实验结果表示,稻谷平均准确率可达96%以上,小麦平均准确率可达92%以上。同时本研究采取不同规模的小样本训练建模,并与BP神经网络模型进行对比,训练结果表明,基于SVM的模型准确率高且表现稳定,明显优于BP神经网络模型。

  • 单位
    国家粮食和物资储备局科学研究院