摘要
视频存在着整体关联性和基于图像块的非局部关联性。针对现有的视频恢复方法仅仅利用一种尺度的关联性质,从而限制了算法恢复性能的问题,通过考虑这两种低秩性质,提出了基于整体关联性和非局部关联性的视频恢复算法。首先,利用视频帧的整体关联性把被噪声污染的视频分解为整体低秩成分和稀疏余项成分。然后,对于余项视频部分其相邻帧存在非局部关联性,利用基于k维树的非局部技术组成低秩图像块组,并通过低秩分解模型去除图像块噪声。最后,整合整体低秩部分与处理后的余项部分,从而得到准确的视频恢复结果。在去除视频中脉冲噪声的实验中,所提算法与联合稀疏与低秩分解算法相比平均峰值信噪比(PSNR)提高了1.3 dB,与鲁棒时空分解算法相比PSNR提高了2 dB。实验结果表明了所提算法的有效性和优越性。
-
单位中国科学院大学; 中国科学院沈阳自动化研究所; 机器人学国家重点实验室