摘要
为了提高模拟电路故障的诊断效果,提出基于DCCA-IWO-MKSVM的模拟电路故障诊断方法。采用DCCA算法对模拟电路的故障特征进行提取,构造新的融合特征。对支持向量机的核函数进行线性组合构造新的多核函数,并用IWO算法对其参数进行优化,以构建最优故障诊断模型,用于融合特征的学习分类。故障诊断实验结果表明:对于融合特征的故障诊断效率,该算法要优于单核函数的IWO-SVM算法,且整个故障诊断系统的诊断效果具有较高的准确率。
- 单位
为了提高模拟电路故障的诊断效果,提出基于DCCA-IWO-MKSVM的模拟电路故障诊断方法。采用DCCA算法对模拟电路的故障特征进行提取,构造新的融合特征。对支持向量机的核函数进行线性组合构造新的多核函数,并用IWO算法对其参数进行优化,以构建最优故障诊断模型,用于融合特征的学习分类。故障诊断实验结果表明:对于融合特征的故障诊断效率,该算法要优于单核函数的IWO-SVM算法,且整个故障诊断系统的诊断效果具有较高的准确率。