摘要

针对工业设备声音数据的易得性,对两河口2号水轮机组开机试验过程中的升/甩负荷等实验进行声音数据采集,对采集的声音数据进行RMS、频谱、声谱图分析。基于波形、频谱以及声谱图的细微差别,选择神经网络作为辅助手段,将声谱图作为训练样本进入神经网络输入层,得到声纹特征,将声纹特征接入聚类模型实现分类,并实现测试样本的分类打分。结果表明,试验中的不同负荷工况和尾水门泄露事故均能够正确识别,本试验训练的模型对工况分类的正确率达到了100%。该研究将有助于建立针对水电站机电设备整体和重要关键部件的机器声纹特征图谱库。

  • 单位
    雅砻江流域水电开发有限公司