摘要
针对标准粒子群优化算法在优化多极值函数时容易陷入局部最优的缺点,分析了其进化原理以及过早收敛的原因,并在此基础上提出了分阶段进化的改进算法,即将进化过程分成多个阶段,不同的进化阶段应用不同的迭代进化公式,以提高种群的多样性,进而有效避免过早收敛。仿真实验结果表明,对于复杂的多极值函数优化问题,改进后的方法比标准粒子群优化算法具有更强的全局寻优性能。
-
单位周口师范学院; 江西省高速公路联网管理中心
针对标准粒子群优化算法在优化多极值函数时容易陷入局部最优的缺点,分析了其进化原理以及过早收敛的原因,并在此基础上提出了分阶段进化的改进算法,即将进化过程分成多个阶段,不同的进化阶段应用不同的迭代进化公式,以提高种群的多样性,进而有效避免过早收敛。仿真实验结果表明,对于复杂的多极值函数优化问题,改进后的方法比标准粒子群优化算法具有更强的全局寻优性能。