摘要

磨损颗粒分析是设备磨损故障诊断和预测的有效手段,为了提高磨粒检测的自动化和智能化程度,提出1种基于改进YOLOv4的目标检测算法,并应用于航空发动机扫描电镜磨粒图像识别.首先,新算法采用VoVNetv2-39替换YOLOv4原主干网络CSPDarknet53,并引入BiFPN特征金字塔结构与新主干相连,同时调整模型中所有3×3标准卷积为深度可分离卷积,以加强多层次特征融合,构造轻量级网络;其次,利用迁移学习解决扫描电镜磨粒图像数量较少的问题,并通过冻结训练加速模型训练过程;最后,应用实际发动机扫描电镜磨粒图像验证,结果表明:新算法相较于原YOLOv4网络,在保证精度的前提下,网络参数量大幅降低,识别速度提升51.1%,满足实际扫描电镜磨粒图像快速、简洁和高精度的检测需求,具备潜在的工程应用价值.

全文