基于核谱回归与随机森林的脑电情感识别

作者:陈朋; 张建华*; 文再治; 夏家峻; 李建荣
来源:华东理工大学学报, 2018, 44(05): 744-751.
DOI:10.14135/j.cnki.1006-3080.20171005001

摘要

利用DEAP情感数据库研究脑电的情感识别问题。首先,使用聚类算法确定情感状态的目标类别;然后,比较了两种不同的特征提取方法:一种是小波变换,另一种是非线性动力学,并研究了基线特征对情感分类效果的影响;最后,研究了5种特征降维方法对分类性能的影响,同时比较了4种不同分类器的性能,包括K-最近邻(KNN)、朴素贝叶斯(NB)、支持向量机(SVM)和随机森林(RF)。研究结果表明,核谱回归(KSR)降维方法和随机森林分类器的组合对情感状态的分类效果最好。通过对脑区与情感关系的研究发现,只使用部分脑区的少量电极也可以达到90%的分类准确度,这些电极主要分布在额叶皮层。

全文