摘要
【目的】量子蚁群算法是一种常见的智能仿生算法,广泛的应用在数学优化、工程技术等领域。该算法在求解旅行商问题时也表现出良好的效果,但当城市规模变大时求解该问题就会出现算法收敛速度慢、早熟、全局寻优能力较弱等问题,为了解决这方面的问题,提出了一种优化的量子蚁群算法。【方法】将部分量子蚁群算法中信息素更新机制与量子旋转角更新机制结合,改进量子选择策略,并将轮盘赌法应用在状态转移规则模型中。【结果】分别使用标准库中的样本和自定义样本,利用Python平台进行实验仿真,通过与其他算法进行比较,并在给出了详细的对比过程。在求解旅行商问题时,提出的算法在最优值差别不大的情况下,减少了早熟,大幅度提高了算法的收敛速度。【结论】提出的算法是有效的,具有一定的实践意义。
- 单位