摘要
杂草与作物争夺肥料、阳光等养分,从而影响作物生长,快速有效地清除杂草危害对提高作物的产量和品质具有重要意义。传统的杂草防治方法常采取大面积喷洒除草剂等措施,无法满足智慧农业的精细化管理要求,精确、可靠的杂草检测是智能除草的关键。在卷积神经网络模型PANet的基础上进行改进,把原始特征提取网络ResNet替换为DenseNet-121,采用FPA模块提供像素级注意力信息,通过金字塔结构增加感受野。以无人机多光谱糖菜杂草图像为研究对象,分别构建近红外790 nm、红色690 nm和归一化植被指数NDVI的训练数据集进行网络训练。发现PANet的训练精度为97.38%,测试精度为93.41%;采用3通道(近红外790 nm+红色690 nm+NDVI)训练的模型F1值最高为0.872。结果表明,该方法可以实现无人机多光谱图像杂草的有效分割,可为农田杂草精确检测和农作物生长状况监测提供参考和借鉴。
-
单位东北林业大学; 机电工程学院