摘要
为提升复杂交通场景下天气识别准确率的同时实现网络轻量化,提出了一种结合改进ConvNeXt网络与知识蒸馏的天气识别方法。首先,在ConvNeXt网络的每组Block特征提取块后加入SimAm注意力机制,构建ConvNeXt_F网络,利用SimAm注意力机制对Block块提取的深层特征进行鉴权并校正权重,有效强化对天气判别性特征的捕获能力;其次,在网络训练过程中将Equalized Focal Loss(EFL)与Mutual-Channel Loss(MCL)采用平均占比的方式进行累加作为总损失函数,一方面利用EFL消除数据不均衡造成的影响,另一方面利用MCL减小同类天气下局部细节特征差异;最后,采用知识蒸馏技术将天气分类知识从ConvNeXt_F网络迁移到轻量级MobileNetV3网络,虽然精度略微损失但网络参数量大幅减少。实验结果表明,与其他算法相比,所提方法在本文构建的宁夏高速公路场景下的天气数据集weather-traffic和公开的自然天气数据集RSCM2017上准确率分别达到96.22%,84.8%,FPS分别达到157.6 Hz,137.6 Hz,FLOPs和Params仅为0.06 G和2.54 M,识别精度、速度和网络的轻量化较原网络均有提高,能够更好地应用于储存和计算能力受限的实际场景中。