摘要

为了提高推荐系统在数据稀疏情况下的推荐质量,提出一种改进的协同过滤算法。该方法使用一种数据挖掘算法对稀疏评分矩阵进行填充;在完整的填充矩阵上计算用户相似性,并引入相似性信任因子;最终做出推荐预测。典型数据集上的对比实验结果表明,即使在评分数据极为稀疏的情况下,该算法仍能取得较好的结果。