摘要

数据稀疏性制约了推荐系统的性能,而合理填充评分矩阵中的缺失值可以有效提升预测的准确性。因此,提出一种基于用户兴趣概念格约简的推荐评分预测(RRP-CLR)算法。该算法包含近邻选择和评分预测两个模块,分别负责生成精简最近邻集合和实现评分预测及推荐。近邻选择模块将用户评分矩阵转化为二进制矩阵后作为用户兴趣形式背景,提出了形式背景约简规则和概念格冗余概念删除规则,以提高生成精简最近邻的效率;在评分预测模块利用新提出的用户相似度计算方法,消除用户主观因素造成的评分差异对相似度计算的影响,而且当两个用户共同评分项目数小于特定阈值时,适当缩放相似度,使用户间的相似度与真实情况更吻合。实验结果表明,与使用皮尔逊相关系数的基于用户的协同过滤推荐算法(PC-UCF)及基于用户兴趣概念格的推荐评分预测方法(RRP-UICL)相比,RRP-CLR算法的平均绝对误差(MAE)和均方根误差(RMSE)更小,具有更好的评分预测准确率和稳定性。