摘要
为充分挖掘蕴含在电力负荷数据中的多尺度时序信息,提升短期电力负荷预测精度,提出了一种多尺度特征增强的改进时间卷积神经网络(improved temporal convolutional network with multi-scale feature enhancement,ECA-MS-DHTCN)模型。首先,使用4种不同尺寸卷积核的因果卷积提取负荷数据特征,并在特征提取层中嵌入高效通道注意力(efficient channel attention network, ECA)模块实现不降维的局部跨通道交互,得到带有通道注意力的多尺度负荷特征。然后,利用双混合扩张卷积层改进基本时间卷积神经网络(temporal convolutional network, TCN)残差块结构,克服TCN模型中扩张卷积结构存在的信息不连续及远距离信息不相关问题,兼顾负荷特征浅层细节及深层联系。最后,将ECA优化的多尺度特征提取层与改进TCN模型结合搭建ECA-MS-DHTCN负荷预测框架,完成短期负荷预测任务。经实际电网负荷数据仿真,结果表明所提出的ECA-MS-DHTCN模型可以在保持较快训练速度的同时有效地提高预测精度。
- 单位