摘要
现有深度学习SAR舰船实例分割方法未考虑特征全等级信息和目标上下文信息,导致了较低实例分割精度。针对上述问题,提出了一种基于全等级上下文压缩激励感兴趣区域ROI提取器的SAR舰船实例分割方法 FL-CI-SE-ROIE。FL-CI-SE-ROIE实现了全等级ROI提取,可保留全等级信息,增强了网络多尺度描述能力。FL-CI-SE-ROIE实现了上下文ROI扩充,可获取目标上下文信息,增强了网络背景鉴别能力。FL-CI-SE-ROIE引入了压缩激励SE模块来平衡不同范围的上下文ROI,可抑制背景干扰,进一步提高了实例分割精度。在公开像素级多边形分割SAR舰船检测数据集PSeg-SSDD上的实验结果表明,所提方法的SAR舰船实例分割精度高于现有其他9种对比模型。
-
单位航天学院; 电子科技大学