摘要
目的提高结直肠癌患者的早期诊断率,帮助结直肠癌患者及早发现病情获得最佳治疗效果(治疗早期直肠癌能达到超过90%的五年存活率)。方法在机器学习理论和实践的基础上,提出了采用向前法作逐步逻辑回归(Logistic Regression,LR)分析筛选出最具有诊断参考性的血清标志物,并利用支持向量机(Support Vector Machine,SVM)与后向传播(Back Propagation,BP)神经网络等模型建立结直肠癌早期诊断模型的方法。结果实验结果显示CEA、CA1724、CA242、CA153和HSP60这5种肿瘤标志物对结直肠癌均有一定的诊断价值,该五种肿瘤标志物LR模型联合检测效...
- 单位