摘要

针对眼底视网膜分割存在病理伪影干扰、微小血管分割不完全和血管前景与非血管背景对比度低等问题,本文提出一种自适应特征融合级联Transformer视网膜血管分割算法。该算法首先通过限制对比度直方图均衡化和Gamma校正等方法进行图像预处理,以增强血管纹理特征;其次在编码部分设计自适应增强注意模块,降低计算冗余度同时消除视网膜背景图像噪声;然后在编解码结构底部加入级联群体Transformer模块,建立血管特征长短距离依赖;最后在解码部分引入门控特征融合模块,实现编解码语义融合,提升视网膜血管分割光滑度。在公共数据集DRIVE、CHASE_DB1和STARE上进行验证,准确率达到97.09%、97.60%和97.57%,灵敏度达到80.38%、81.05%和80.32%,特异性达到98.69%、98.71%和98.99%。实验结果表明,本文算法总体性能优于现有大多数先进算法,对临床眼科疾病的诊断具有一定应用价值。