摘要
针对传统无线传感器网络(wireless sensor network,WSN)中节点定位精度不高的问题,提出了一种混合粒子群(particle swarm optimization,PSO)和差分进化优化(differential evolution,DE)算法。首先在PSO中引入惯性权重的自适应更新策略,以兼顾开发和勘探能力,在种群经过PSO进化后,然后根据提前设定的阈值,将其分为适应度值较大的Su种群和适应度值较小的In种群,In中的粒子使用DE算法继续优化。HPSO-DE算法结合PSO算法和DE算法的优点,达到较好的性能。然后用标准测试函数来检测该算法的性能,验证结果表明所提出的HPSO-DE在寻优速度和收敛精度较PSO和DE而言都有了较大提高。接下来将HPSO-DE方法应用到WSN网络节点定位场景上,从实验测试结果可以看出,其精度相比PSO平均提高了0.5 m左右,在定位上具有更大的优势。
-
单位吉首大学; 浙江邮电职业技术学院