摘要

目的 构建产后抑郁风险预测模型,并识别预测因子。方法 选取住院分娩产妇835人为研究对象,按照时间段分为训练集722人及测试集113人,以产后6周是否发生产后抑郁为结局指标。利用logistic回归、支持向量机和随机森林3种监督学习算法建立风险预测模型,采用序列前向选择法筛选特征,通过网格搜索法调整模型参数。将训练好的模型在训练集上进行十折交叉验证,在测试集上进行外部验证。结果 产妇产后6周抑郁发生率为22.6%(189/835)。经筛选,最终纳入14个预测因子。3种监督学习模型中,随机森林模型预测性能最佳,在测试集上的受试者工作特征曲线下面积、Brier得分、准确率、精确度、召回率和F1得分分别为0.943、0.073、0.903、0.684、0.722和0.703。结论 基于随机森林的产后抑郁风险模型预测性能最佳,能够辅助医护人员识别高风险人群。