摘要
首先,从辐射源的个体识别过程的3个步骤,即信号预处理、信号特征提取、信号分类分别展开分析,阐述了将深度学习应用于辐射源的个体识别方法;然后,归纳了基于深度学习的辐射源识别方法的改进趋势,包括零-小样本学习的弱监督学习方法和多特征融合识别;最后,针对神经网络的训练和推理均需要消耗大量算力的问题,总结了基于现场可编程门阵列(FPGA)处理器的深度学习加速器并将其运用于本识别方法中,从而提高辐射源个体识别的速率、降低功耗和硬件成本,使基于深度学习的辐射源个体识别方法,能以更好的性能应用于实际场景中。
- 单位