摘要
目的:应用人工神经网络技术,联合检测6种肿瘤标志对肺癌与胃癌或肠癌进行区分判别,建立肿瘤标志联合检测肺癌的辅助诊断模型。方法:采用放射免疫学、分光光度法、原子吸收分光光度法等方法,测定67例肺癌患者、47例胃癌患者和50例大肠癌患者血清中癌胚抗原(CEA)、胃泌素(gastrin)、神经元特异性烯醇化酶(NSE)、唾液酸(SA)、铜锌比值(Cu/Zn)、钙(Ca)等6项指标。建立基于人工神经网络的肺癌肿瘤标志智能诊断模型。结果:肺癌-胃癌的人工神经网络模型判别肺癌的灵敏度,特异度和准确度分别为100%、83.3%和93.5%;肺癌-肠癌模型判别肺癌的灵敏度、特异度和准确度分别为76.9%、10...
- 单位