基于人工智能的测井地层划分方法研究现状与展望

作者:孙龙祥; 韩宏伟; 冯德永; 刘海宁; 李泽瑞; 康宇; 吕文君*
来源:油气地质与采收率, 2023, 30(03): 49-58.
DOI:10.13673/j.pgre.202203047

摘要

基于地球物理测井地层划分相关概念及分类,将测井曲线自动分层方法分为传统方法和人工智能方法,从有监督学习方法和无监督学习方法 2个方面分析人工智能方法的应用情况,并综合比较各类地层自动划分方法的优缺点。通过探索相关领域的发展情况,从不同角度思考测井地层划分方法进一步发展所存在的挑战及其解决方法。一是引入半监督学习方法,解决人工标签稀缺问题;二是从分割模型的角度,打破对测井数据的固有认识;三是采用测井曲线重构等方法,解决井段失真或缺失所导致的数据异构问题;四是通过样本加权,解决人工标签错误导致的数据偏差问题;五是采用迁移学习方法,解决不同地区数据分布差异问题。人工智能方法是解决地层划分、岩性识别、储层识别、生产运行中现有难题以及推进测井相关任务数字化转型的重要支撑。

全文