摘要
通信信号调制识别技术可用于信号确认、干扰识别、电子战对抗以及星间链路通信等方面。针对低噪声下信号调制方式识别率低与识别种类少的问题,提出一种基于神经网络的数字模拟混合信号调制方式识别算法。简化并改进识别特征参数,降低参数对噪声干扰的敏感度,设计基于判决树的自动识别流程。通过自适应学习速率选取最优隐含层节点数,改进BP神经网络算法。结合判决树和改进的神经网络算法,给出基于神经网络的算法调制方式识别方案。仿真结果表明,在信噪比不低于0 d B时,该算法的平均识别成功率达到98%以上。
-
单位中国科学院大学; 中国科学院空间科学与应用研究中心