摘要

对于航拍图像中的小型目标,YOLOv3算法模型对其识别精准度低,在目标被遮挡或目标较密集时存在漏检现象。针对上述问题提出了一种基于改进YOLOv3的航拍目标实时检测方法,该方法加入104×104特征分辨率的检测模块并删减了13×13特征分辨率的检测模块,同时增加了浅层网络的层数,用于提取更加细微的像素特征;在训练阶段针对DOTA-v1.0航拍数据集使用K-means++聚类得到9个先验框进行检测,用于提升整体网络的训练速度。实验结果表明:改进后的YOLOv3检测算法的检出率提升了15.0%,mAP-50提升了10.5%。